
Using LibFuzzer, KLEE, and LegUp to
Validate Hardware Designs

Josué Nunes Campos1 Maria Dalila Vieira1 Michael Canesche2 Ricardo S. Ferreira2 José Augusto M. Nacif1
1Science and Technology Institute, Universidade Federal de Viçosa, Florestal, Minas Gerais, Brasil

2Informatics Departament, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brasil
{josue.campos, maria.d.vieira, michael.canesche, ricardo, jnacif}@ufv.br

Abstract—Given the existing difficulties in developing appli-
cations to the FPGA platform, High-Level Synthesis (HLS) is
a promising solution to abstract the hardware implementation
details. However, questions regarding the quality of the results
of these tools still a problem, as well as whether they are ready for
use by programmers. We present a case study using the LLVM
library LibFuzzer and the execution tool KLEE in conjunction
with the HLS tool LegUp to evaluate both tools in terms of their
data flows, inputs, and outputs. Our results show that the LegUp
HLS tool presents a Verilog code very close to the C applications
with the LibFuzzer library in the KLEE tool for the generated
tests with satisfactory execution times.

Index Terms—FPGA, HLS, data flow, hardware validation,
software simulation

I. INTRODUCTION

Over the years, the hardware accelerators adoption has
increased to meet the high demand for the use of CPUs
in terms of performance and energy consumption. Hardware
accelerators have become a widely-adopted solution, and the
most popular platforms are Graphics Processing Units (GPUs),
Field Programmable Gate Arrays (FPGAs), and Application
Specific Integrated Circuits (ASICs). In this context, FPGAs
focus on parallelizable operations through the pipeline, achiev-
ing competitive performance and low energy consumption.

Nevertheless, the application development for FPGAs re-
quires hardware knowledge, even when we use OpenCL or
HLS. Thus, the hardware development for FPGAs remains a
challenge due to the possible gaps between the existing high-
level programming environments and the demand from the
programmers. Fortunately, HLS tools are regularly updated.
So, we aim to exploit the current viability of these tools in
the industrial scenario.

In this sense, recent research in the area shows the use of
automated software testing to assess code vulnerabilities [1].
Furthermore, with the increase in the use of accelerators, the
evaluation and optimization of applications for hardware have
been necessary to allow programmers, in general, to develop
projects with quality [2].

We present a case study to evaluate the flow of C code
executed in software using Klee and LibFuzzer. Further, we
compare it with the flow of the version of the same C
Language code in Verilog generated by the LegUp HLS tool.
We also evaluate the execution time of these codes to check
the quality of the automatically generated designs.

We have organized the remaining paper as follows: in
section II, we present some related work in the context of
High-Level Synthesis and automated software testing. Section
III shows an overview of the tools used, as well as our
objectives. Section IV describes the methodology used to
generate the results, and we present code for our case studies.
In section V, we discuss results and, finally, in section VI, we
present our conclusions and future work.

II. RELATED WORK

The High-Level Synthesis (HLS) tools, with a focus on C
and C++, aim to facilitate the implementation in accelerators
such as FPGAs, allowing programmers to evaluate their ap-
plications in software and hardware as well. In this context,
some works analyze the impact of applications focused on
hardware [2], which measures the effect of optimizations made
in OpenCL to verify the performance in FPGA. Jamieson et
al. [3], presents a process of evaluating systems and projects
in High-Performance Computing (HPC).

Yet, our work addresses the validation of the Verilog gen-
erated by the HLS LegUp tool through comparisons between
inputs and outputs obtained with the KLEE. This tool has
a widespread adoption to produce high-coverage tests for
systems automatically. In this scenario, other works use the
KLEE to deliver test entries [4]. Further, in the hardware
accelerators context, Li et al. [5] and Chattopadhyay et al. [6]
propose respectively GUPT and GKLEE that are frameworks
to check the correctness and performance for C++ GPU
programs.

Besides using the KLEE tool, we validate the RTL generated
through the LLVM Library LibFuzzer, which plays a role
similar to KLEE by creating input tests on top of the C
application [1]. Serebryany et al. [7] address a tutorial using
the library and AddressSanitizer, which is a memory error
detector. Our paper uses these two resources to generate input
tests to obtain the same outputs in C code and the generated
Verilog code.

III. BACKGROUND

As part of the development process, we commonly do the
validation performing execution tests. Therefore, the KLEE
tool has an approach that verifies the entire execution flow of
a C application is made [4], allowing the programmer greater

Alessandro Girardi


Alessandro Girardi
20th Microelectronics Student Forum - August 26-28, 2020



knowledge about the functioning of his code, in addition
to contributing as a bug-finding tool. On the other hand,
developing applications for accelerators has been a challenge
for programmers in general. In this sense, the HLS tools bring
an approach to facilitate the development process. The LegUp
tool allows the programmer to directly convert a program in
C or C ++ to Verilog, to enable the programmer to obtain a
design for FPGAs [8].

Fig. 1. High-level synthesis design steps.

Figure 1 shows the workflow of the development and
verification of a Verilog module from the LegUp HLS. First,
we validate the C design using a test module and the input
tests. HLS tools commonly implement this functionality. If we
achieve the expected results in these tests, we can do the high-
level synthesis, which translates the high-level code (usually
in C/C++) to RTL design. The next step consists of the RTL
verification. This functionality in LegUp compares the outputs
between the C and the Verilog codes. Finally, we could also
do the hardware synthesis of this consistent Verilog using the
HLS.

However, it is still a question whether the HLS tools are
ready for programmers to use. Through this, our objective
with this paper, as the Figure 1 shows, we aim to evaluate
the Verilog generated by LegUp so that the data execution
flows correspond to the original flows of C codes generated
by KLEE and LibFuzzer.

A. KLEE

Fig. 2. KLEE execution flow.

We use the KLEE to generate inputs to our software valida-
tion and hardware verification through the symbolic execution.
However, KLEE also works as a bug-finding tool. Figure 2
presents the steps of KLEE usage. This tool executes the first
time allowing any arbitrary value for the target input. So, in

the next steps, they substitute the current program for a new
code whose inputs turn to operations that manipulate symbolic
values. Therefore, this happens as the systems follow both
branches for each ramification. When the tool achieves a bug
or a path ends, it returns a test case with concrete values that
reach the same path in a manual execution for a deterministic
algorithm. For this reason, KLEE can generate high-coverage
tests for complex systems [4].

B. LibFuzzer and AddressSanitizer

As an alternative to KLEE, the LibFuzzer also is an auto-
matic generator of high-coverage tests for C programs. The
LibFuzzer is coverage-guided evolutionary fuzzing differently
to KLEE that define the coverage through the target code’s
branches. LibFuzzer stands out in the industrial scenario
and is a well-established solution while the other remains
in the academic research context. This tool generates the
entries via a specific fuzzing entry-point, a target function
that has a vector as an input parameter. However, we must
use the LLVM’s SanitizerCoverage instrumentation to access
the coverage information of these tests. Furthermore, some
of them can make random memory access or have undefined
behaviors. We use the addressSanitizer(ASan) and Undefined-
BehaviorSanitizer(UBSan), which are the most used in their
contexts. The Asan is a memory error detector, and The UBSan
is an undefined behavior detector.

C. LegUp

The LegUp HLS has a free and commercial version, both
of which receive the C code as input to convert to Verilog [9].
However, the second version has support for C ++ code as
well. The programmer has access to an intuitive graphical in-
terface similar to an IDE in this version aimed at programmers
developing their applications. However, the features (Table I)
allow the programmer to follow the entire conversion process
from the execution of the C application C to the synthesis
of the Verilog code for the target FPGA. Although there are
limitations regarding the structure of the C code, such as
dynamic memories and recursion, the tool has advantages over
other HLS tools in terms of simplicity and useful resources
for the programmer to develop and evaluate their applications.

TABLE I
LEGUP COMMERCIAL VERSION COMMANDS

LegUp Target DescriptionCommand
init Project Starts a LegUp project
sw C code Execute C code with GCC
hw Verilog Generate Verilog Code

cosim C Code/RTL C/RTL Co-Simulation
sim Verilog Simulate Verilog Code
fpga Verilog Synthesize Verilog Code
clean Generated files Clean generated files

Table I presents the most important commands from the
Legup commercial version. The command names are in the
first row. Next, the second shows the target for each one,



meaning the object of the command action. Finally, the last
row has the descriptions for these actions.

IV. METHODOLOGY

We aim to check the quality of the designs automatically
generated by the LegUp HLS tool. Thus, we propose a
workflow to produce inputs to any standard code and create
a corresponding Verilog with LegUp. We also check the
resulting RTL design correctness. Figure 3 shows this process
as a whole, but it has three major independent stages: input
production, software validation, and hardware verification.

Fig. 3. Tools execution flow.

Figure 3 presents our workflow. Each transition label iden-
tifies a step. First, we use the KLEE tool and LibFuzzer to
validate the C code and generate a list of inputs for it (1).
Next, we execute the C design with this test entries to store the
outputs (2). So, we produce the RTL design corresponding to
this algorithm using the LegUp High-Level Synthesis tool (3).
Finally, we check the Verilog output and compare it with
the C output to validate the generated design (4). Thus, at
this process ends, we can synthesize the RTL in a hardware
platform.

A. Case Study: The Shellsort Algorithm

Fig. 4. C Language code for KLEE.

Figure 4 shows our study case with adjustments for KLEE.
We choose it because of its alternative flows, its size in lines,
and the use of structures commonly used in real applications.
As the 6th line shows, we must specify the target inputs with
KLEE. First, we compile this code to the LLVM bytecode
using the flag “clang -emit-llvm” on the clang compiler. Next,
we execute the resulting bytecode using the “klee” command.
So, we obtain some input files that we must read using the
command “ktest-tool”. Thus, we use the pipe(|) to route this
command output to a standard text file. Figure 5 shows an

Fig. 5. Inputs generated by KLEE.

example of the inputs that KLEE generates. As our code has
only integer input, we need the integer values.

Figure 6 presents our study case with adjustments for
LibFuzzer. First, we must include two libraries. Next, we call
our main function LLVMFuzzerTestOneInput, to receive one
input vector. Further, we add (extern “C”) before the return
of this function. Finally, we specify restrictions to the size of
the input vector or its values. To execute this code, we use the
following commands:

• clang++ -g -fsanitize=signed-integer-overflow, address,
fuzzer shell.c

• ./a.out -runs=10 > a
The first command compiles “shell.c” into a fuzzer binary

using the LLVM. We use the sub-command “-fsanitize” to
specify the instrumentation and link it to the libFuzzer library.
Thus, “signed-integer-overflow” builds the target binary with
the UBSan, and “address” calls the ASan. As mentioned
above, UBSan detects undefined behaviors, and ASan checks
memory errors. Further, the second command executes the re-
sulting executable file. In this line, the flag “-runs” determines
the number of individual test runs, which we must set to -1
to run indefinitely times.

Fig. 6. C Language code for LibFuzzer.

We translate our C code to a Verilog module using the
LegUp HLS. After that, we run a tool feature called SW/HW
Co-Simulation, which performs simulation with C and Verilog
codes. In this step, LegUp automatically creates the Verilog
testbench module and initialize the data to the RTL design
simulation according to the C code data. We perform a manual
comparison with the outputs logs of both simulations to assess
they are equal, meaning that we have a consistent Verilog.
Moreover, we use another way to validate the generated
hardware, checking that the generated Verilog is efficient at
run time.

In addition to performing tests for the Shellsort algorithm,
we have also run other code taken directly from GitHub
that uses multiple selection structures (if/else) to validate the



generated design for a real application. We carry out the same
configuration process for generating inputs and outputs.

V. EXPERIMENTAL RESULTS

We execute 10 input and output tests for each algorithm, and
we obtained the same data flow correspondence in all cases,
that is, the code in Verilog is very close to the application in
C.

Moreover, as shown in the Figure 7, it is possible to analyze
the execution graph of the algorithm and observe the flow of
the Verilog code generated from the C code, providing the
programmer the possibility of analyzing the operation of the
program also in hardware.

Fig. 7. Data flow of Shellsort generated by LegUp.

Table II compares the average time of the 10 executions
of the generated Verilog codes and the initial C applications,
showing that there is a time speedup for both codes. This
indicates that the HLS tool has good results for use by
programmers in general, providing resources to visualize the
behavior of the generated code, as well as the flow tests of
the KLEE tool and LibFuzzer library.

TABLE II
AVERAGE EXECUTION TIME OF SOFTWARE AND HARDWARE CODES

Codes C Verilog by LegUp
Average time (ms) Average time (ms)

Ext hashfunc 0.4703 0,000126
Shellsort 0.00222 0,00166

VI. CONCLUSION

We do a study case that presents the workflow of the
development and verification of a Verilog module from a

high-level synthesis with the LegUp tool. Thus, we aim to
know if the HLS tools supply the usability demand from
the programmers and check the quality of the automatically
generated designs.

The LegUp HLS is a well-established tool in the high-
level synthesis context. Our results show that the generated
Verilog is very close to the C codes with satisfactory execution
times. According to our study case, a usual programmer
can use this HLS tool without previous knowledge about
hardware development. Further, the interface is intuitive even
for command-line use. Also, we can parallel the code using
the pragmas which do loop unrolling, for example, without
knowing their effects on the hardware.

As future work, we aim to use KLEE and LibFuzzer to
compare the data flow with other HLS tools currently available
on the market to evaluate for programmers their usability and
performance in real applications, just as we did in this article
with LegUp HLS.

ACKNOWLEDGMENTS

We thank LegUp Computing for providing the evaluation
license for the commercial version of the tool. We also thank
professor and researcher Fernando Magno Q. Pereira from
UFMG for support given to automated test tools. Furthermore,
we would like to thank CNPq, CAPES and FAPEMIG for the
financial support and the companies Intel and NVIDIA for
access to their tools.

REFERENCES

[1] W.-C. Chao, S.-C. Lin, Y.-H. Chen, C.-W. Tien, and C.-Y. Huang,
“Design and implement binary fuzzing based on libfuzzer,” in 2018 IEEE
Conference on Dependable and Secure Computing (DSC). IEEE, 2018,
pp. 1–2.

[2] A. Sanaullah, R. Patel, and M. Herbordt, “An empirically guided opti-
mization framework for fpga opencl,” in 2018 International Conference
on Field-Programmable Technology (FPT). IEEE, 2018, pp. 46–53.

[3] P. Jamieson, A. Sanaullah, and M. Herbordt, “Benchmarking heteroge-
neous hpc systems including reconfigurable fabrics: Community aspira-
tions for ideal comparisons,” in 2018 IEEE High Performance extreme
Computing Conference (HPEC). IEEE, 2018, pp. 1–6.

[4] C. Cadar, D. Dunbar, D. R. Engler et al., “Klee: Unassisted and automatic
generation of high-coverage tests for complex systems programs.” in
OSDI, vol. 8, 2008, pp. 209–224.

[5] G. Li, P. Li, G. Sawaya, G. Gopalakrishnan, I. Ghosh, and S. P.
Rajan, “Gklee: Concolic verification and test generation for gpus,”
in Proceedings of the 17th ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming, ser. PPoPP ’12. New York,
NY, USA: Association for Computing Machinery, 2012, p. 215–224.
[Online]. Available: https://doi.org/10.1145/2145816.2145844

[6] S. Chattopadhyay, P. Eles, and Z. Peng, “Automated software testing
of memory performance in embedded gpus,” in 2014 International
Conference on Embedded Software (EMSOFT), 2014, pp. 1–10.

[7] K. Serebryany, “Continuous fuzzing with libfuzzer and addresssanitizer,”
in 2016 IEEE Cybersecurity Development (SecDev). IEEE, 2016, pp.
157–157.

[8] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “Legup: high-level synthesis for fpga-based
processor/accelerator systems,” in Proceedings of the 19th ACM/SIGDA
international symposium on Field programmable gate arrays, 2011, pp.
33–36.

[9] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, T. Czajkowski,
S. D. Brown, and J. H. Anderson, “Legup: An open-source high-
level synthesis tool for fpga-based processor/accelerator systems,” ACM
Transactions on Embedded Computing Systems (TECS), vol. 13, no. 2,
pp. 1–27, 2013.


